电磁流量计常见故障检测判别及其解决方法

[请登录][免费注册]设为首页|收藏本站

文章内容

电磁流量计常见故障检测判别及其解决方法

液体中含有气泡的现象流量非满管电极腐蚀电极结垢及电极短路电导率过低

2005年8月(1)

0 引言

    电磁流量计作为当前流程工业广泛使用的流量计,在运行中的故障判别方法受到了国内外使用者的关注。德国化工测量与调节技术标准化委员会NA-MUR曾在电磁流量计使用者和制造者中间作过电磁流量计在应用过程中主要故障及其成因的统计,就调查结果汇总了8种典型故障,并按故障发生而影响电磁流量计使用的重要程度撰写了VDI-NAMUR-WIB2650导则,其中的第3部分2.2节为电磁流量计的故障在线诊断要求(如表1所列),包含了实际应用中的大多数故障类型。作者根据多年实践,对电磁流量计的这些常见故障的成因、检测判别方法以及对故障的处理方式简要阐述,仅供广大读者参考。

表1  电磁流量计的故障在线诊断要求

优先程度

典型的故障

1

2

2

3

3

4

4

液体中含有气泡

电极腐蚀

电导率过低

衬里变形

电极结垢

外部干扰磁场或电场

电极短路(金属颗粒)

1 液体中含有气泡的现象

   液体中含有气泡的现场导致测量不准或测量值波动(输出波动)。

   成因:液体中泡状气体的形成有从外界吸入和液体中溶解气体(空气)转变成游离状气泡两种途径。若液体中含有较大气泡,则因擦过电极时能遮盖整个电极,使流量信号输入回路瞬时开路,导致输出信号出现晃动。

判别方法:最简单的判别方法是当遇到晃动时,切断磁场的励磁回路电流,如果此时仪表依然有显示且不稳定时,说明大多是由于泡影响造成。如果此时以指针式万用表测量电极电阻,可测量到电极的回路电阻要比正常时高,但该测试需要靠专业人员长期累计的测试经验和数据。

                 图1 更换安装位置

解决方法:对于被测介质中含有空气的情况,如果判断是由安装位置引起的,如因电磁流量计装在管系高点而潴留气体或外界吸入空气造成流量计晃动的话,更换安装位置是最彻底的解决方法,如图1所示,在管线最低点或采用U型管安装。但很多应用情况是口径较大或者安装的位置不易改换,建议在流量计上游安装集气包和排气阀,如图2所示。一台DN2200口径的电磁流量计,因气泡造成显示的晃动越可达20~50%,在安装了排气装置后,测量即恢复正常。

            图2  安装有排气装置的电磁流量计

2 非满管

   非满管现象可以看作液体中含有气泡的一种极端情况。

   成因:液体未充满管道可分为液面高度高于测量电极水平面或低于水平面两种情况。当管内液面高于电极水平面时,若管系的前后直管段比较理想时,电磁流量计的测量大多能够稳定,但流量计所计量的液体体积包含了管内的气体体积,故这种测量存在着很大的测量误差。当管内液面高度低于电极表面时,此时电极裸露在空气中,测量回路实际处于开路状态。电磁流量计的测量值和输出处于一种随机的状态,不停地晃动或是满度。非满管的情况多出现在靠流体直流或流量计后无任何背压的直接排放口,例如在污水行业经常遇到。

   判别方法:可采用前述气泡判别的方法,此时以指针式万用表测量电极电阻,可发现电极的回路电阻明显变高,若以水对比,国产MF30万用表以×1K的量程测量,所测得得阻值不会大于100k ,大于此值,可绝对判定电极回路异常,在排除电缆开路的前提下,判定空管是可信的。如果条件允许的话,还可观察流量计后端液体排放口(如图3所示),当排放出的液体明显不充满即可判断电磁流量计安装为非满管。

                      图3  液体排放口

                      图4  腐蚀后的电极

   解决方法:在流量计安装时尽量避免出现非满管的情况。如前面提及的在管线最低端安装或有意将流量计安装在U型管道。另外,现在市场上已有能够在非满管情况下测量的电磁流量计。

3 电极腐蚀

  现象:在排除气泡的因素后有因电极腐蚀而造成测量值晃动的情况,且都以传感器失效而告终。

  成因:由于电极材料的选择不当造成电极为被测液体所腐蚀,从而导致流量计输出晃动。

  判别方法:由于电极材料不耐腐蚀所造成的故障只有在电极被腐蚀后才会表现出来,之前通常无法判别。电极一旦被腐蚀后,所造成的结果如图4示(右边为完好的电极,左边是腐蚀后的电极)。对此的解决方法,只有更换新的电极。传统的电极腐蚀故障诊断处理都属于事后维护处理的方法。当前市场上最新的电磁流量计从因电极腐蚀形成的电极噪声入手,对电极腐蚀形成的噪声进行分析处理,从而给出量化的腐蚀判断依据。如OPTIFLUX的IFC300电磁流量计可经过噪声量化处理软件对流量测量信号中夹杂的噪声信号进行分离处理,当噪声信号超过预设值时即报警(如图5和图6所示)。

求和得到干扰放大值

(采样A×信号A)+(采样B×信号B)+……

          图5  IFC300噪声采样图

                  图6 IFC300噪声放大计算方法

4 电极结垢及电极短路

  现象:电极短路的判别比较简单,若被测介质中含有金属物质时,电极短路较易诊断,此时测量值明显偏小或趋于零。但这种现象在日常运行中并不多见。因电磁流量计经常应用于原水和污水等计量环境,电极结垢的发生几率较高。当电极结垢时,表现为信号逐渐减小,直至绝缘而使得信号回路开路,此时流量信号被隔绝。

   成因:当被测介质的粘度较高时,易在管壁附着和沉淀,若附着的介质是比被测液体电导率高的导电物质,则信号电势被分流而不能工作,即电极短路,若是非导电层,就是我们日常所说的电极结垢,则使电极开路而不能工作。

   判别方法:令附着层的附加示值误差为 ,则

  

式中:t为附着层厚度;d为测量管内径; 分别为附着层、液体电导率。

若附着于衬里管壁异物层为氧化铁锈层,或以金属为主要成份的染料,其电导率大于液体电导率,测得的流量值将比实际流量值低;若为碳酸钙等水垢层,其电导率低于液体,测得的流量值将低于实际流量。若附着层电导率与液体相同,按式计算附加误差为零,但此只局限于附着层厚度小的条件,譬如2t/d要小于10%,因为相同流量有附着层时流通截面积减小,但平均流速增加,相互间可抵消,也只能说附加误差可忽略。

解决方法:建议选用不易附着的尖形或半球形突出电极、可更换式电极、刮刀式清垢电极等。刮刀式电极可在传感器外定期手动刮除沉垢。也有暂时断开测量电路,在电极间通以短时间的低压大流量,焚烧清除油脂类附着层。易产生附着层的场合采用提高流速以达到自清扫管壁的目的是一个比较有效的方法,当然采用易清洗的管道连接是一个比较彻底的方法。

5电导率过低

现象:电导率低于阀值(下限值)会产生测量误差直至不能稳定工作,使用时出现晃动现象,电导率超过阀值即使再变化时,此时测量的示值误差几乎恒定。通常仪表制造厂规范中规定的下限值是指在较理想的条件下可测量的最低值,而实际使用条件不可能都很理想。例如当电磁流量计规范中规定的下限值为5 ,实际使用时即出现输出晃动。

               图7接液电阻测量

            图8 热扩散现象

判别方法:液体电导率可查阅附率或有关手册,若缺少现成数据时,则可用电导率仪取样测定。但有时候现场并不配备电导率仪,因此,最简单的方法可以用万用表测出液体的接液电阻,再用同样的方法测试现场普通自来水的接液电阻,比较两者的测试结果,若介质的接液电阻比自来水大一个数量级,此时介质的电导率约为30~50 (自来水一般为30~50 )。

由于接液电阻和电导率是反比关系,所以直接以所测得的接液电阻的大小进行判别液可以。下式即是一接液电阻的经验公式

         

式中: 为液体电导率,d为电极直径。如当液体电导率为5×10-6 ,电极直径1cm时,接液电阻R计算得200k 。所以任何接液电阻值大于该值的液体都可认为液体电导率过低不适合使用常规的电磁流量计。

解决方法:电导率过低超出了仪表所容许的测量范围,此时唯一的解决方法是选用其它能满足要求的低电导率电磁流量计(如电容式电磁流量计)或者是其它原理的流量计。

6 衬里变形

  现象:测量不准确或传感器损坏。

  成因:衬里变形,大多发生在氟塑料的衬里,造成这种现象的原因有两种:一是蒸汽渗透引起氟塑料衬里的热扩散现象(如图8所示),所谓热扩散是当管道内介质(气体或蒸汽)流过氟塑料衬里时所发生的自然的物理现象,通常渗透的程度主要取决于衬里材料、液体和蒸汽的类型、衬里的厚度(当衬里的厚度增加时渗透程度则相应减小)、衬里内外的温差(当衬里内外温差很大时渗透则加剧)和管道压力等多个因素。二是氟塑料衬里特别是聚四氟乙烯(PTFE)衬里本身的工艺结构,因为聚四氟乙烯与管壁间仅靠压贴,五粘结力,故不能用于负压管道。如图9所示为在高温应用场合管道瞬时形成负压后的衬里变形。

                  图9  衬里变形

 

无觅相关文章插件,快速提升流量